US 2020/0069973 Al

[0012] Different calibrations may be used for different
categories. For example, the calibration is for a histological
subtype for the patient.

[0013] In a second aspect, a medical imaging system is
provided for therapy decision support. A medical imager is
configured to scan a patient. An image processor is config-
ured to predict a result of therapy for the patient in response
to input of scan data from the scan to a multi-task trained
network. The image processor is configured to estimate a
dose for the therapy from a regression relating the dose, a
time-to-event, and the result. The dose is estimated from the
regression so that the result is below a threshold probability
of failure at a given value of the time-to-event. A display is
configured to display the predicted result.

[0014] In one embodiment, the medical imager is a com-
puted tomography imager where the multi-task trained net-
work was trained using a first loss for image features based
on handcrafted radiomics and using a second loss for
outcome.

[0015] In another embodiment, the regression is a calibra-
tion from a cohort used to train the multi-task trained
network. In other embodiments, the regression is a nomo-
gram relating the dose, the time-to-event, and the result. The
dose may be modeled as a continuous variable in the
regression. The regression may be based on estimation of a
cumulative incidence function.

[0016] In an embodiment, the threshold probability is 5%.
Other values may be used to estimate the dose to result in the
probability of recurrence being below the threshold. In other
embodiments, the image processor is configured to estimate
the dose as providing the result in the given value for the
time-to-event, such as in 12 or 24 months.

[0017] The regression may be for all patients. Alterna-
tively, the regression is specific to a given histological
subtype.

[0018] Any one or more of the concepts described above
may be used alone or in combination with each other and/or
aspects in the parent application. The aspects or concepts
described for one embodiment may be used in other embodi-
ments or aspects. The aspects or concepts described for a
method or system may be used in others of a system,
method, or non-transitory computer readable storage
medium.

[0019] These and other aspects, features and advantages
will become apparent from the following detailed descrip-
tion of preferred embodiments, which is to be read in
connection with the accompanying drawings. The present
invention is defined by the following claims, and nothing in
this section should be taken as a limitation on those claims.
Further aspects and advantages of the invention are dis-
cussed below in conjunction with the preferred embodi-
ments and may be later claimed independently or in com-
bination.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The components and the figures are not necessarily
to scale, emphasis instead being placed upon illustrating the
principles of the embodiments. Moreover, in the figures, like
reference numerals designate corresponding parts through-
out the different views.

[0021] FIG. 1 illustrates an example of machine training a
decision support system;

[0022] FIG. 2 illustrates another example of machine
training a decision support system;

Mar. 5, 2020

[0023] FIG. 3 is a flow chart diagram of one embodiment
of a method for machine training decision support in a
medical therapy system;

[0024] FIG. 4 is a flow chart diagram of one embodiment
of a method for decision support in a medical therapy
system,

[0025] FIG. 5 shows an example machine-learning net-
work for training using radiomic feature loss with a more
commonly available ground truth than outcome;

[0026] FIG. 6 shows another example machine-learning
network for training using segmentation loss with the more
commonly available ground truth than outcome;

[0027] FIG. 7 shows an example machine-training archi-
tecture for a multi-task generator;

[0028] FIG. 8 shows another example machine-training
architecture for a multi-task generator;

[0029] FIG. 9 shows an example of use of two losses in
training of a multi-task generator;

[0030] FIG. 10 shows another example of use of two
losses in training a multi-task generator;

[0031] FIG. 11 is one embodiment of an arrangement
using both prediction of outcome and clustering in decision
support;

[0032] FIG. 12 show a comparison of example outputs of
survival using handcrafted radiomics and a multi-task gen-
erator;

[0033] FIG. 13 is a block diagram of one embodiment of
a system for therapy decision support;

[0034] FIG. 14 is a flow chart diagram of one embodiment
of a method for decision support in a medical therapy
system, where determination of individualized dose is pro-
vided based on the outcome generated in the embodiment of
FIG. 4;

[0035] FIG. 15 illustrates an example relationship between
radiation dose, treatment failure, and score output by a
machine-learned network; and

[0036] FIG. 16 shows comparison in examples of calibra-
tion curves relative to observed calibration curves.

DETAILED DESCRIPTION OF EMBODIMENTS

[0037] An imaging-based artificial intelligence provides
for patient stratification and/or radiotherapy response pre-
diction. This radiotherapy decision support may be based on
pre-treatment CT or other modality scans. The therapy
outcome may be predicted based on imaging and/or non-
imaging data, providing physician decision assistance.
[0038] FIGS. 1-12 are directed to decision support using a
machine-learned model. FIGS. 14-16 are directed to indi-
vidualizing dose based, in part, on the image information as
provided by the machine-learned model of the decision
support, a low threshold of probability of failure, and a
time-to-event.

[0039] FIG. 1 shows one embodiment of a decision sup-
port system for producing prognostic signatures of the
therapy from radiological imaging data. The signature is
patient information or features from imaging data of the
medical image. The medical image is preprocessed, such as
scaled, normalized, and/or segmented for tumors or regions
including tumors. Different from traditional radiomic fea-
tures that are usually handcrafted, deep-learning-based
radiomic features that are completely data-driven are to be
used. The handcrafted radiomics are used as ground truth as
these features may be created from any image, allowing for
unsupervised learning or ground truth unlabeled for the



